Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering

نویسندگان

  • Maryam M. Shanechi
  • Amy L. Orsborn
  • Jose M. Carmena
چکیده

Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain's behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user's motor intention during CLDA-a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to parameter initialization. Finally, the architecture extended control to tasks beyond those used for CLDA training. These results have significant implications towards the development of clinically-viable neuroprosthetics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Control of Encoderless Synchronous Reluctance Motor Drives Based on Adaptive Backstepping and Input-Output Feedback Linearization Techniques

In this paper, the design and implementation of adaptive speed controller for a sensorless synchronous reluctance motor (SynRM) drive system is proposed. A combination of well-known adaptive input-output feedback linearization (AIOFL) and adaptive backstepping (ABS) techniques are used for speed tracking control of SynRM. The AIOFL controller is capable of estimating motor two-axis inductances ...

متن کامل

A Robust Adaptive Observer-Based Time Varying Fault Estimation

This paper presents a new observer design methodology for a time varying actuator fault estimation. A new linear matrix inequality (LMI) design algorithm is developed to tackle the limitations (e.g. equality constraint and robustness problems) of the well known so called fast adaptive fault estimation observer (FAFE). The FAFE is capable of estimating a wide range of time-varying actuator fault...

متن کامل

Intelligent Auto pilot Design for a Nonlinear Model of an Autonomous Helicopter by Adaptive Emotional Approach

There is a growing interest in the modeling and control of model helicopters using nonlinear dynamic models and nonlinear control. Application of a new intelligent control approach called Brain Emotional Learning Based Intelligent Controller (BELBIC) to design autopilot for an autonomous helicopter is addressed in this paper. This controller is applied to a nonlinear model of a helicopter. This...

متن کامل

Robust Adaptive Attitude Stabilization of a Fighter Aircraft in the Presence of Input Constraints

The problem of attitude stabilization of a fighter aircraft is investigated in this paper. The practical aspects of a real physical system like existence of external disturbance with unknown upper bound and actuator saturation are considered in the process of controller design of this aircraft. In order to design a robust autopilot in the presence of the actuator saturation, the Composite Nonli...

متن کامل

Robust adaptive control of voltage saturated flexible joint robots with experimental evaluations

This paper is concerned with the problem of design and implementation a robust adaptive control strategy for flexible joint electrically driven robots (FJEDR), while considering to the constraints on the actuator voltage input. The control design procedure is based on function approximation technique, to avoid saturation besides being robust against both structured and unstructured uncertaintie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016